

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 The following coding standards are in place to assist in shared development of the Chapel Hypergraph Library (CHGL). Following these standards will ease code readability and maintenance. While modifications and suggestions are welcome, please consult the development team to get concurrence prior to making changes.

Single Namespace

As the Chapel language itself is within a single namespace, CHGL can also be used as a single namespace via use CHGL;. However, sub-modules can be used individually when only portions of the library are required. E.g., use CHGL.Components;

CamelCase

Generally, use CamelCase or camelCase instead of separating_with_underscores. Specific rules follow below:

	Modules, records, classes, and types are UpperCamelCase

	Methods and variables are lowerCamelCase

Private vs Public

As Chapel currently does not have access modifiers, by convention CHGL prefixes private members with an underscore. Direct use of prefixed members will result in undefined behavior. For example publicMethod() vs _privateMethod().

Method Names and Part-of-Speech

One of the nice things about a well-designed method names is that it’s easy to mentally translate from a method call into a sentence. For example, myNode.accept(someThing) can be translated into “myNode, please accept someThing”. In order for this to work, method names that represent an action should generally be a verb.

Module, record, class, type, variable and parameter names are nouns. Accessor methods can be named using a noun. E.g., student.height() fits into that category.

Module Naming vs Type Naming

Names should use the convention of making the module name a more specific/spelled out version of the type names, in particular when the module contains only one type. Examples:

	class Block is in module BlockDist

	class BigInt can be in module BigInteger

	class Barrier can be in module TaskBarrier

Whitespace

The following whitespace rules apply:

	Use tabs instead of spaces for code block indentation, allowing developers to set their own IDE’s preferred tab width.

	No line length requirements outside of requesting lines be a length that generally remains easily readable.

	Newlines should use the Unix/Linux \n character instead of Windows \r\n

Records vs Classes

Generally follow the guidance from Chapel developers where records are used for local memory allocations and pass-by-value semmantics. Classes have a single instnace shared across all localities, and therefore are also passed by reference. See https://stackoverflow.com/a/48332847 for more information.

CHGL Contributors

The following people have contributed to the implementation of CHGL (alphabetically by last name):

	Sinan Aksoy, Pacific Northwest National Laboratory [http://www.pnnl.gov]

	Sarah Harun, Mississippi State University [https://www.msstate.edu/]

	Louis Jenkins, Pacific Northwest National Laboratory [http://www.pnnl.gov] and University of Rochester [https://www.rochester.edu/]

	Cliff Joslyn, Pacific Northwest National Laboratory [http://www.pnnl.gov]

	Christopher Lightsey, Mississippi State University [https://www.msstate.edu/]

	Hugh Medal, The University of Tennessee, Knoxville [https://www.utk.edu/]

	David Mentgen, Mississippi State University [https://www.msstate.edu/]

	Tim Stavenger, Pacific Northwest National Laboratory [http://www.pnnl.gov]

	Tanveer Bhuiyan, Mississippi State University [https://www.msstate.edu/]

	Marcin Zalewski, Pacific Northwest National Laboratory [http://www.pnnl.gov]

Table of Contents

	Project Overview

	Installation Guide

	Environment Requirements

	Dependencies

	Distribution Files

	Installation Instructions

	Test Cases

	User Guide

Project Overview

Project Name: Chapel Hypergraph Library (CHGL)

General Area or Topic of Investigation: High performance, parallel hypergraph metrics and algorithms

Travis CI Build Status: [image: _images/chgl.svg]Build Status [https://travis-ci.org/pnnl/chgl]

Summary

Chapel Hypergraph Library (CHGL), a library
for hypergraph computation in the emerging Chapel language. Hypergraphs
generalize graphs, where a hypergraph edge can connect any number of vertices.
Thus, hypergraphs capture high-order, high-dimensional interactions between
multiple entities that are not directly expressible in graphs. CHGL is designed
to provide HPC-class computation with high-level abstractions and modern
language support for parallel computing on shared memory and distributed memory
systems.

Environment Requirements

Programming Language: Chapel

Operating System & Version: Tested on Chapel Docker containers (Debian) and internal RHEL 7 system

Required Disk Space: Approx. 40mb for code repository and binaries

Dependencies

A compiled version of the Chapel programming language with is test virtual environment is all that is required to compile and test CHGL. Unit tests were run on the Travis CI continuous integration system using Chapel’s Docker container (see included .travis.yml file for details).

Name	Version	Download Location	Country of Origin	Special Instructions
—-	——-	—————–	—————–	——————–
Chapel	Release 1.19.0	https://github.com/chapel-lang/chapel	USA	Tested with release 1.19.0 [https://github.com/chapel-lang/chapel/releases/tag/1.19.0]

Distribution Files

CHGL is released through a GitHub repository found at https://github.com/pnnl/chgl. No additional files are required.

Installation Instructions

Chapel

Chapel must be installed on the system before compiling and installing CHGL.
The version required is documented above in Dependencies.
Be sure to checkout the required branch, tag, or commit CHGL has been tested with as
using a different version of Chapel may cause errors.

If a particular branch, tag, or commit is required, execute the following git command
after cloning the Chapel GitHub repository:

git checkout <branch_name, tag_name, or commit_hash>

With the correct Chapel version checked out, continue by folloing the Chapel installation documented
at https://chapel-lang.org/docs/usingchapel/QUICKSTART.html.

Alternatively if a release is used, a Chapel Docker image found at https://hub.docker.com/r/chapel/chapel/.

CHGL

In the future, CHGL will be compiled and packaged into a Mason library. For the
time being, CHGL is used directly (see unit tests for examples). The code is
compiled and tested simultaneously – see the Test Cases section below for
running the unit tests.

Also see the .travis.yml file for an example of our continuous
integration build. Or view the current status at https://travis-ci.org/pnnl/chgl.

NOTE: The COMPOPTS files in test/unit and test/performance make use
of --no-lifetime-checking --no-warnings for successful compilation. If you
are compiling independent code that uses CHGL, be sure to use these options as
well.

Test Cases

CHGL includes both unit & performance tests utilizing the start_test Python
script supplied by Chapel. Change directories into test/unit or
test/performance and execute start_test to run the tests. View the
unit test README or
perfomrance test README for more information.

The unit tests are best run to verify the CHGL build. Performance tests were not routinely
run by a continuous integration environment and were written targeting particular hardware
systems, leading them to be not as useful for verifying a CHGL build.

User Guide

A full User Guide is still under development; however, the CHGL API documentation
can be generated using Chapel’s chpldoc application at the root of the source tree.
E.g., chpldoc src/*/*.chpl.

Running Chapel Hypergraph Library Performance Tests

We use the Chapel start_test --performance Python script to execute unit tests.

Performance tests should be separate from unit tests (see test/unit folder for unit tests). This separates the concerns of testing and allows us to more easily maintain the two.

The <TestName>.good file will likely be empty, as software concerned with high performance will likely have no output to compare. However, the <TestName>.chpl file will still need to perform some writeln('...') calls to output the performance metrics – e.g., execution time and memory usage.

The paired <TestName>.perfkeys file lists those performance metrics output for Chapel’s testing framework to retrieve and store in its <TestName>.dat files, keeping records of performance over time. Though in the case of tests run in Jenkins and GitLab these metrics are handled separately as the build workspaces will likely be wiped out each build. TODO: document where the performance trends are in the build systems, consider Chapel’s GRAPHFILES support

If you want to manually run an individual performance test, execute start_test --performance <fileName>.chpl.

NOTES

On a Fedora 27 system, I had to install glibc-static and libstdc++-static before the --static flag used by the performance test compilation linked propery. YMMV

See these links for more information

	https://github.com/chapel-lang/chapel/tree/master/test/studies/parboil/BFS

	https://github.com/chapel-lang/chapel/blob/master/util/start_test

	https://github.com/chapel-lang/chapel/blob/master/test/release/examples/README.testing

	https://github.com/chapel-lang/chapel/blob/master/doc/rst/developer/bestPractices/TestSystem.rst#performance-tests

Running Chapel Hypergraph Library Unit Tests

We use the Chapel start_test Python script to execute unit tests.

Each test needs a <TestName>.chpl file with executable Chapel code to test your unit of work. The paired <TestName>.good file is the expected stdout that is compared to the actual to determine if the test passes. The Jenkins and GitLab builds are configured to run all .chpl files found in the test/unit folder.

If you want to manually run an individual unit test, execute start_test <fileName>.chpl.

See these links for more information

	https://github.com/chapel-lang/chapel/issues/7495

	https://github.com/chapel-lang/chapel/blob/master/util/start_test

	https://github.com/chapel-lang/chapel/blob/master/test/release/examples/README.testing

	https://github.com/chapel-lang/chapel/blob/master/doc/rst/developer/bestPractices/TestSystem.rst

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

